
By Ben Hackbarth, Norbert Schnell, Philippe Esling, Diemo Schwarz, Gilbert Nouno.

Copyright Ben Hackbarth, 2011-2014.

Contents

1 Installation 2

2 Really Quick Start 2

3 Quick Start 3

3.1 Segmenting Corpus Soundfiles . 3

3.2 Concatenating . 4

4 Corpus Segmentation 5

5 The Concatenation Options File 6

6 The TARGET Variable and tsf() object 6

7 The CORPUS Variable and csf() object 7

7.1 Manipulating which segments are added to the corpus 8

7.2 Manipulating How Directories Are Read . 9

7.3 Manipulating How Segments Will Be Concatenated 10

7.4 Specifying csf() keywords globally . 12

8 SEARCH variable and spass() object 13

9 The d() object 14

10 The SUPERIMPOSE variable and si() object 15

11 Other Options 16

1

11.1 Descriptor Computation Parameters . 16

11.2 Concatenation . 17

11.3 Concatenation Output Files . 19

11.4 Other Output Files . 20

11.5 Printing/Interaction . 20

11.6 Csound Rendering . 21

1 Installation

The following lists the dependancies of audioguide1.1.0. For the moment audioguide1.1.0 only

works on OS X. Note that, regarding numpy, recent versions of OS X (after 10.5) come with

python2.7 that automatically has numpy installed. This distribution of audioguide1.1.0 comes

with a precompiled version of pysdif for 64-bit python and, on more current machines, should

run out of the box. Here is a complete list of the resources that audioguide1.1.0 requires on

your computer:

pysdif To compile install download the sdif library and configure, make and install. Then

download my patched version of the pysdif module. ‘cd’ into the directory when unzipped

and run: ‘python2.7 setup.py install’. You’re now setup to use pysdif in python2.7.

numpy Most python2.7 installations come with numpy, a numerical computation module.

Upgrading to the latest python2.7 should get you there. If you don’t have it, you can

download the source code or a binary installer here.

csound6 Needed only if you would like audioguide1.1.0 to automatically render concatenations

(which you probably do). Download an installer from here.

matlibplot (optional) Install this python module to enable graphing of descriptors and

soundfile segmentation. Get it from here.

supervp (optional) Used to stretch a target before concatenating.

2 Really Quick Start

$> python agSegmentSf . py examples / lachenmann . aiff

$> python agConcatenate . py examples/01−simplest . py

2

http://sourceforge.net/projects/sdif/files/sdif/
http://www.benhackbarth.com/audioGuide/release/pysdif-0.1.4-patch.zip
http://sourceforge.net/projects/numpy/files/NumPy/
http://csound.github.io/download.html
http://matplotlib.org/downloads.html

3 Quick Start

Using audioguide1.1.0 comes down to interacting with python scripts in the audioguide1.1.0

folder. For soundfile concatenation, one script does segmentation of corpus soundfiles. A second

script performs concatenation based on a variety of variables found in a options file. While you

do not need to know how to write Python code in order to use audioguide1.1.0, it is not a bad

idea to know some of Python’s basic syntax.

The reason that segmentation and concatenation are separated into discrete steps that I find

is useful to fine-tune the segmentation of corpus sounds before using them in a concatenation.

Soundfile segmentation is a difficult technical problem and should remain conceptually and

aesthetically open-ended. I have yet to find an algorithm that does not require adjustments

based on the nature of the sound in question and the intention of the user as to what a segment

should be.

3.1 Segmenting Corpus Soundfiles

Note: If you only want to use folders of sounds that have been pre-segmented into individual

files, you can skip1 the Segmenting Corpus Soundfiles section and proceed to the concatenation

section.

The script you use to segment your corpus files with a script called ‘agSegmentSf.py’. AgSeg-

mentSf.py automatically creates a textfile which denotes the start and stop times of sound

segments in a continuous audiofile. Once you find a segmentation that you’re happy with

you’re ready to use this sound file in the agConcatenate.py script. Keep in mind that you do

not need to use agSegmentSf.py if you do not want to – alternatively you could:

1. use whole soundfiles as segments

2. create segmentation files by hand

3. create segmentation files with other software as long the textfile is written in the same

format as audioguide1.1.0’s.

To segment a corpus file, ‘cd’ into the audioguide1.1.0 folder and run the following command:

$ > python2 . 7 agSegmentSf . py examples / lachenmann . aiff

audioguide1.1.0 will think for a second, and then output the following data detailing the seg-

1But make sure tell audioguide1.1.0 not to search for segmentation textfiles by setting the corpus attribute
wholeFIle=True. See the Manipulating How Directories Are Read subsection of the CORPUS options section
for more info.

3

mentation of this audiofile:

−−−−−−−−−−−−−−−−−−−−−− AUDIOGUIDE SEGMENT SOUNDFILE −−−−−−−−−−−−−−−−−−−−−−

Evaluating / Users / ben / Documents / audioguide1 . 1/ examples / lachenmann . aiff from 0.00−64.65

AN ONSET HAPPENS when

The amplitude crosses the Relative Onset Trigger Threshold : −40.00 (−t option)

AN OFFSET HAPPENS when

1 . Offset Rise Ratio : when next−frame ' s−amplitude / th i s−frame ' s−amplitude >= 1.30 (−r

option)

. . . or . . .

2 . Offset dB above minimum : when this frame ' s abso lu te amplitude <= −80.00 (minimum

found amplitude o f −260.00 p lus the o f f s e t dB boost o f 12 .00 (−d opt ion))

Found 144 segments

Wrote f i l e /Users /ben/Documents/ audioguide1 .1/ examples / lachenmann . a i f f . txt

As a result of running this python script, audioguide1.1.0 automatically writes a textfile with

the exact same name and path as the soundfile, but adding the extension .txt – in this case:

examples/lachenmann.aiff.txt. In this case audioguide1.1.0 found 144 segments obtained using

a triggering threshold of -40 dB, a rise ratio of 1.3 and a offset dB value of -80 (you can read

more about how to alter these values and their effect in section 4).

3.2 Concatenating

Once you have segmented corpus soundfiles to your satisfaction, you are ready to call the

concatenation script agConcatenate.py with a special audioguide1.1.0 options file as the first

(and only) argument.

To run one of the examples in the examples directory, run the following command inside the

audioguide1.1.0 directory:

python2 . 7 agConcatenate . py examples/01−simplest . py

..which will use the options contained in ‘examples/01-simplest.py’ to parameterize the con-

catenative algorithm. In this options file you specify a target sound, the corpus sounds, and

(if you like) lots of other options that parameterize the concatenative process. When run, the

‘agConcatenate.py’ script will perform the following summarised operations:

1. Run an ircamdescriptor analysis of the soundfile in the TARGET variable2.

2An SDIF analysis is only done once – subsequent usages of this soundfile simply read SDIF data from disk.
Analysis files are stored in a directory called ‘audioguide1.1.0/data json/’ in the audioguide1.1.0 folder. This
directory can become quite large since these SDIF files are quite substantial in size. Removing this folder will
cause all SDIF files to be recomputed.

4

2. Segment the target sound according to your options file. An Audacity-style label file is

created in a file called ‘output/tgtlabels.txt’ in the output directory.

3. Run an ircamdescriptor analysis of the soundfiles in the CORPUS variable (only the first

time each of these files are used).

4. (If you’ve specified them) Remove corpus segment according to descriptor limitations

(Nothing above a certain pitch, nothing below a certain dynamic, etc.).

5. Normalise target and corpus descriptor data according to your options file.

6. Go through each target segment one by one. Select corpus segment(s) to match each

target segment according to the descriptors and search passes in the SEARCH variable

of your options file. Control over the layering and superimposition of corpus sounds is

specified in the SUPERIMPOSE variable.

7. Write selected segments to a csound score called ‘output/output.csd’. (In addition to the

csd file there are many other types of outputs which you can read about in 11.3.

8. If you have csound, ‘output/output.csd’ is rendered with csound to create an audiofile

called ‘output/output.aiff’.

9. If you have csound, automatic playback of ‘output/output.aiff’ at the command line.

4 Corpus Segmentation

The textfiles created by agSegmentSf.py use a segmentation labeling format identical to that of

the soundfile editor Audacity. So, to examine your segments, open lachenmann.aiff in Audacity,

then import labels and select ‘examples/lachenmann.aiff.txt’.

5

5 The Concatenation Options File

The options file used by the concatenate script is a python file that defines a bunch of variables.

Most variables can be changed with simple assignments using the ‘=’ symbol. For instance, to

change the path of the csound output sound file, write the following in your myOptions.py file:

CSOUND_RENDER_FILEPATH = ' /path/ to / the / f i l e / i /want . a i f f ' # se t s the path o f the csound

output a i f f f i l e

DESCRIPTOR_HOP_SIZE_SEC = 0.02049 # change the ana l y s i s hop s i z e

However, there are five custom objects that are written into the options file as well – tsf(), csf(),

spass(), d() and si(). These objects take required parameters and also take keyword arguments.

The following sections describe the object-style variables; Section 11 details variables changed

with the ‘=’ symbol.

6 The TARGET Variable and tsf() object

The TARGET variable is written as a tsf() object which requires a path to a soundfile and also

takes the following optional keyword arguments:

tsf (' pa th to sound f i l e ' , start=0, end=f i l e −length , thresh=−40, offsetRise=1.5 ,

offsetThreshAdd=+12, offsetThreshAbs=−80, scaleDb=0, minSegLen=0.05 , maxSegLen=1000 ,

midiPitchMethod= ' composite ' , stretch=1, segmentationFilepath=None)

start The time in seconds to start reading the soundfile.

end The time in seconds to stop reading the soundfile.

thresh Segmentation onset threshold: a value from -100 to 0. The lower the value the soft the

target’s amplitude can be in order to trigger a selection from the corpus. So, -12 yields

fewer corpus selections that -24.

offsetRise Segmentation offset ratio: a number greater than 1. During segmentation the rise-

ratio is the ratio of a frame’s amplitude to the next frame’s amplitude. In an active

segment, if this ratio is greater than user-supplied rise-ratio, it will cause an offset.

offsetThreshAdd Segmentation offset relative threshold: a positive value in dB. This value is

added to the soundfile’s minimum amplitude. During segmentation, if a frame’s amplitude

is below this threshold, it causes a segment offset. Also see offsetThreshAbs.

offsetThreshAbs Segmentation offset absolute threshold: a negative value in dB. When seg-

menting the target, if a frame’s amplitude is below this value it will cause an offset. This

6

variable is an absolute value while offsetThreshAdd is relative to the soundfile’s minimum

amplitude. Effectively, whichever of these two variable is closer to 0 will be the offset

threshold.

minSegLen* Segmentation: the minimum duration in seconds of a target segment.

maxSegLen* Segmentation: the maximum duration in seconds of a target segment.

scaleDb* Applies an amplitude change to the whole target sound. By default, it is 0, yielding

no change. -6 = twice as soft. The target’s amplitude will usually affect concatenation:

the louder the target, the more corpus sounds can be composited to approximate it’s

energy profile.

midiPitchMethod same as corpus method documented in 7.3.

stretch* Uses SuperVp to time stretch/compress the target sound before analysis and concate-

nation. Stretched sound files are saved and reused in the audioguide/data stretched sfs

directory. A value of 1, the default, will cause no time stretching to be applied. 2 will

double the duration of the soundfile. Note that, in order to use this option, you must set

the SUPERVP BIN variable in the audioguide/defaults.py file.

segmentationFilepath by default the Target sound is segmented at runtime. However, if

you’d like to specify a user-defined segmentation, you may give a file path to this variable.

Note that this file must be a textfile with the same format as corpus segmentation files.

TARGET = tsf (' cage . a i f f ') # uses the whole s ound f i l e at i t s g iven amplitude

TARGET = tsf (' cage . a i f f ' , start=5, end=7, scaleDb=6) # only use seconds 5−7 o f cage .

a i f f at double the amplitude .

TARGET = tsf (' cage . a i f f ' , start=2, end=3, stretch=2) # only uses seconds 2−3, but

s t r e t c h e s the sound with supervp to twice i t s durat ion be f o r e concatenat ion

7 The CORPUS Variable and csf() object

The CORPUS variable is defined as a list of csf() objects which require a path to a soundfile

OR a directory. File paths and/or directory paths may be full paths or relative paths to the

location of the options file you’re using or a path found in the SEARCH PATHS variable. A

csf() object required the soundfile/directory name, then takes the following optional keyword

arguments:

csf (' pathToFi leOrDirectoryOfFi l e s ' , start=None , end=None , includeTimes =[] ,

excludeTimes =[] , limit =[] , wholeFile=False , recursive=True , includeStr=None ,

excludeStr=None , scaleDb=0.0 , limitDur=None , onsetLen=0.01 , offsetLen= '30% ' ,
postSelectAmpBool=False , postSelectAmpMethod= 'power−mean−seg ' , postSelectAmpMin=−12,

postSelectAmpMax=+12, midiPitchMethod= ' composite ' , transMethod=None , transQuantize

=0, allowRepetition=True , restrictRepetition=0.5 , restrictOverlaps=None ,

7

restrictInTime=0, maxPercentTargetSegments=None , scaleDistance=1, superimposeRule=

None , segmentationFile=None , segmentationExtension= ' . txt ')

The simplest way to include a soundfile in your corpus is to use its path as the first argument

of the csf() object:

CORPUS = [csf (” lachenmann . a i f f ”)] # w i l l s earch f o r a segmentat ion f i l e c a l l e d

lachenmann . a i f f . txt and add a l l o f i t s segments to the corpus

The simplest way to include a directory of soundfiles in your corpus is to use its path as the

first argument of the csf() object:

CORPUS = [csf (” lachenmann . a i f f ”) , csf (' piano ')] # w i l l use segments from lachenmann .

a i f f as we l l as a l l sounds in the d i r e c t o r y c a l l e d piano

However, as you can see above, each csf() object has a lot of optional arguments to give you

better control over what segments are used, how directories are read and how segments are

treated during concatenation.

Note: Each of these keyword arguments only apply to the csf() object within which they are

written. If you’d like to specify these parameters for the entire corpus, see 7.4.

7.1 Manipulating which segments are added to the corpus

start Any segments which start before this time will be ignored.

end Any segments which start after this time will be ignored.

csf (' lachenmann . a i f f ' , start=20) # only use segments who s t a r t l a t e r than 20 s .

csf (' lachenmann . a i f f ' , start=20, end=50) # only use segments who s t a r t between 20−50s .

includeTimes* A list of two-number lists which specify regions of segments to include from

this file’s list of segment times. See example below.

excludeTimes* Same as includeTimes but excludes segments in the identified regions.

csf (' lachenmann . a i f f ' , includeTimes =[(1 , 4) , (10 , 12)]) # only use segments f a l l i n g

between 1−4 seconds and 10−12 seconds .

csf (' lachenmann . a i f f ' , excludeTimes =[(30 , 55)]) # use a l l segments except those

f a l l i n g between 30−55s .

limit* A list of equation-like strings where segmented descriptor names are used to include/ex-

clude segments from this file / directory.

8

csf (' lachenmann . a i f f ' , limit [' centro id−seg >= 1000 ']) # segments whose centro id−seg i s

equal to or above 1000 .

csf (' lachenmann . a i f f ' , limit [' centro id−seg < 50% ']) # only use 50% of segments with

the lowest centro id−seg .

csf (' lachenmann . a i f f ' , limit ['power−seg < 50% ' , 'power−seg > 10% ']) # only use

segments whose power−seg f a l l s between 10%−50% of the t o t a l range o f power−seg ' s in

t h i s f i l e / d i r e c t o r y .

segmentationFile* Manually specify the segmentation text file. By default, audioguide1.1.0

automatically looks for a file with the same name as the soundfile plus the extension

‘.txt’. You may specify a path file (as a string), or a list of strings to include multiple

segmentation files which all use the same soundfile.

segmentationExtension* Manually specify the segmentation text file extension. See above.

csf (' lachenmann . a i f f ' , segmentationFile= 'marmotTent . txt ') # w i l l use a segmentat ion

f i l e c a l l e d marmotTent . txt , not the d e f au l t lachenmann . a i f f . txt .

csf (' lachenmann . a i f f ' , segmentationExtension= '−gran . txt ') # w i l l use a segmentat ion

f i l e c a l l e d lachenmann . a i f f −gran . txt , not the d e f au l t lachenmann . a i f f . txt .

7.2 Manipulating How Directories Are Read

The following keyword arguments are useful when dealing with directories of files.

wholeFile* if True audioguide1.1.0 will use this soundfile as one single segment. If False,

audioguide1.1.0 will search for a segmnetation file made with agSegmentSf.py.

recursive* if True audioguide1.1.0 will include sounds in all subfolders of a given directory.

csf (' s l i c e d /my−d i r e c t o r y ' , wholeFile=True) # w i l l not search f o r a segmentat ion txt

f i l e , but use whole s o und f i l e s as s i n g l e segments .

csf (' /Users /ben/ g r a v i l l o n s ' , recursive=False) # w i l l only use s o und f i l e s in the named

fo ld e r , i gno r ing i t s s u bd i r e c t o r i e s .

includeStr* A string which is matched against the filename (not full path) of each soundfile

in a given directory. If part of the soundfile name matches this string, it is included. If

not it is excluded. This is case sensitive. See example below.

excludeStr* Opposite of includeStr.

inc ludeS t r / exc ludeSt r have l o t s o f uses . One to h i gh l i g h t here : working with sample

databases which are normal ized . Rather than having each corpus segment be at 0dbs ,

we apply a scaleDb value based on the presence o f a `dynamic ' wr i t t en in to the

f i l ename .

9

csf ('Vienna−harpNotes / ' , includeStr=[' f ' , ' f f '] , scaleDb=−6) ,
csf ('Vienna−harpNotes / ' , includeStr= ' mf ' , scaleDb=−18) ,
csf ('Vienna−harpNotes / ' , includeStr= ' p ' , scaleDb=−30) ,
th i s w i l l use a l l sounds from th i s f o l d e r which match one o f the three dynamics .

7.3 Manipulating How Segments Will Be Concatenated

scaleDb* applies an amplitude change to each segment of this collection. by default, it is

0, yielding no change. -6 = twice as soft. Note that amplitude scaling affects both the

concatenative algorithm and the csound rendering.

limitDur* limits the duration of each segment from this csf() entry. The duration of all

segments over this value (in seconds) will be truncated.

onsetLen* if onsetLen is a float or integer, it is the fade-in time in seconds. If it is a

string formed as ’10%’, it is interpreted as a percent of each segment’s duration. So,

onsetLen=0.1 yields a 100 ms. attack envelope while onsetLen=’50%’ yields a fade in

over 50% of the segment’s duration.

offsetLen* Same as onsetLen, but for the envelope fade out.

csf (' lachenmann . a i f f ' , onsetLen=0.1 , offsetLen= '50% ') # w i l l apply a 100ms fade in

time and a fade out time l a s t i n g 50% of each segments ' durat ion .

postSelectAmpBool* If True, audioguide1.1.0 will attempt to change the amplitude of se-

lected segments to match the amplitude of the target. The default, False, makes no

adjustment.

postSelectAmpMethod* Tells audioguide1.1.0 how to attempt to match corpus and target

amplitudes. It is only meaningful if postSelectAmpMethod is True:

‘power-mean-seg’ will use the mean of segment powers’ to change adjust selected seg-

ments amplitudes.

‘power-seg’ will adjust amplitudes according to peak amplitudes.

postSelectAmpMin* If postSelectAmpBool is True, this value in dB limits the lower thresh-

old of the amplitude change. 0=no change, -6=half volume, etc.

postSelectAmpMax* If postSelectAmpBool is True, this value in dB limits the upper thresh-

old of the amplitude change. 0=no change, +6=double volume, etc.

midiPitchMethod* this tells audioguide1.1.0 how got calculate a midipitch for each segment.

There are several possibilities, detailed below. Note that if any of these methods do not

10

find a result, -1 is returned. This attribute is used when writing midi output files. This

data is also accessible as the descriptor d(‘MIDIPitch-seg’).

‘f0-seg’ returns the averaged f0 array as the midipitch. Note that it is not power weighted

- it is actually the median of f0.

‘centroid-seg’ returns the power averaged centroid converted into a midipitch.

‘filename’ looks at the filename of the corpus segment to see if there is a midipitch

indicated. Names like A1ShortSeq.wav, Fs1ShortSeq.wav and BP-flatter-f-A#3.wav

work.

‘composite’ first tries to look for a midipitch in the filename. If not found, then tries

‘f0-seg’.

transMethod* A string indicating how to transpose segments chosen from this corpus entry.

You may chose from:

None yields no transposition.

‘single-pitch n’ transposes all selected segments from this csf() to midipitch n.

‘random n m’ transposes this segment randomally between midipitch n and m.

‘f0’ transposes a selected corpus segment to match the f0-seg of the corresponding target

segment.

‘f0-chroma’ transposes a selected corpus segment to match the f0-seg of the correspond-

ing target segment modulo 12 (i.e., matching its chroma).

transQuantize* Quantization interval for transposition of corpus sounds. 1 will quantize to

semitones, 0.5 to quarter tones, 2 to whole tones, etc.

csf (' piano / ' , transMethod= ' f 0 ') # transpose corpus segments to match the t a r g e t ' s f 0 .

csf (' piano / ' , transMethod= ' f0−chroma ' , transQuantize=0.5) # transpose corpus segments

to match the ta r g e t ' s f 0 mod 12 . Then quant ize each r e s u l t i n g p i t ch to the newest

quarte r o f tone .

allowRepetition* If False, any of the segments from this corpus entry may only be picked

one time. If True there is no restriction.

restrictRepetition* A delay time in seconds where, once chosen, a segment from this corpus

entry is invalid to be picked again. The default is 0.1, which the same corpus segment

from being selected in quick succession.

csf (' piano / ' , allowRepetition=False) # each i nd i v i dua l segment found in t h i s d i r e c t o r y

o f f i l e s may only be de l e t ed one time during concatenat ion .

11

csf (' piano / ' , restrictRepetition=2.5) # Each segment i s i n v a l i d to be picked i f i t has

a l r eady been s e l e c t e d in the l a s t 2 .5 seconds .

restrictOverlaps* An integer specifying how many overlapping samples from this collection

may be chosen by the concatenative algorithm at any given moment. So, restrictOver-

laps=2 only permits 2 overlapping voices at a time.

restrictInTime* a time in seconds specifying how often a sample from this entry may be

selected. – for example restrictInTime=0.5 would permit segments from this collection

to be select a maximum of once every 0.5 seconds.

maxPercentTargetSegments* a float as a percentage value from 0-100. This number limits

the number of target segments that this corpus entry may be selected. For example, a

value of 50 means that this corpus entry is only valid for up to 50% of target segments;

after this threshold has been crossed, further selections are not possible. None is the

default, which has no effect.

scaleDistance* Scale the resulting distance when executing a multidimensional search using

on segments. scaleDistance=2 will make these sounds twice as ‘far’, and thus less likely

to be selected by the search algorithm. scaleDistance=0.25 makes 4 times more likely to

be picked.

superimposeRule* This one is a little crazy. Basically, you can specify when this corpus’s

segments can be chosen based on the number of simultaneously selected samples. You do

this by writing a little equation as a 2-item list. superimposeRule=(‘==’, 0) says that

this set of corpus segments may only be chosen is this is the first selection for this target

segment (sim selection ‘0’). superimposeRule=(‘>’, 2) say this corpus’s segments are only

valid to by picked if there are already more than 2 selections for this target segment. I

know, right?

7.4 Specifying csf() keywords globally

csf() keywords may be specified globally using the variable CORPUS GLOBAL ATTRIBUTES.

Note that they are specified in dictionary format rather than object/keyword format.

CORPUS = [csf (' lachenmann . a i f f ' , scaleDb=−6) , csf (' piano / ' , scaleDb=−6, wholeFile=True

)]

i s equ iva l en t to

CORPUS_GLOBAL_ATTRIBUTES = { ' scaleDb ' : −6}
CORPUS = [csf (' lachenmann . a i f f ') , csf (' piano / ' , wholeFile=True)]

12

8 SEARCH variable and spass() object

The SEARCH variable specifies how audioguide1.1.0 picks corpus segments to match target

segments. The idea here is make a very flexible searching structure where the user can create

multiple search passes on different descriptor criteria.

The SEARCH variable is written as a list of spass() objects. Each spass() has the following

parameters:

spass (search_type , descriptor1 . . . descriptorN , percent=None , minratio=None , maxratio=

None)

And the search type string may be among the following methods:

‘closest’ Return the best matching segment.

‘closest percent’ Return the top percent percent of the best matching segments.

‘farthest’ Return the worst matching segment.

‘farthest percent’ Return the worst percent percent of segments.

‘ratio limit’ Return segments where the ratio of the target descriptor value to the segment’s

value falls between minratio and maxratio. Only works for averaged descriptors.

Here is the most simple case of a SEARCH variable:

SEARCH = [spass (' c l o s e s t ' , d (' c en t ro id '))] # w i l l s earch a l l corpus segments and

s e l e c t the one with the ` c l o s e s t ' c en t ro id to the t a r g e t segment .

Note that the first argument is the type of search performed – in this case, selecting the closest

sample. Following the arguments are a list of descriptor objects which specify which descriptors

to use:

SEARCH = [spass (' c l o s e s t ' , d (' c en t ro id ') , d (' ef fDur−seg '))] # w i l l s earch a l l corpus

segments and s e l e c t the one with the ` c l o s e s t ' c en t ro id and e f f e c t i v e durat ion

compared to the ta r g e t segment .

Ok, great. As you can probably imagine, the first argument, ‘closest’, tells audioguide1.1.0 to

pick the closest sound. But, there are also other possibilities:

SEARCH = [spass (' f a r t h e s t ' , d (' c en t ro id '))] # return the worst matching segment .

SEARCH = [spass (' c l o s e s t p e r c e n t ' , d (' c en t ro id ') , percent=20)] # return the top 20

percent best matches .

SEARCH = [spass (' f a r t h e s t p e r c e n t ' , d (' c en t ro id ') , percent=20)] # return the worst 20

13

percent o f matches .

If you use ‘closest percent’ or ‘farthest percent’ as the one and only spass object in the SEARCH

variable, audioguide1.1.0 will select a corpus segment randomly among the final candidates.

However, you can also chain spass objects together, essentially constructing a hierarchical

search algorithm. So, for example, take the following SEARCH variable with two separate

phases:

SEARCH = [

spass (' c l o s e s t p e r c e n t ' , d (' ef fDur−seg ') , percent=20) , # take the best 20% of matches

from the corpus

spass (' c l o s e s t ' , d (' mfccs ')) , # now f i nd the best matching segment from the 20 percent

that remains .

]

I use the above example a lot when using audioguide1.1.0. It first matches effDur-seg, the

effective duration of the target measured agains’t the effective duration of each corpus segment.

It retains the 20% closest matches, and throws away the worst 80%. Then, with the remaining

20%, the timbre of the sounds are matched according to mfccs.

SEARCH = [spass (' r a t i o l i m i t ' , d (' centro id−seg ') , minratio=0.9 , maxratio=1.1)] #

reduce the number o f samples in the corpus such

Remember, the order of the spass objects in the SEARCH variable is very important – it is

essentially the order of operations.

9 The d() object

Use the d() object for parameterizing a descriptor in an spass() object. The d() object take 1

argument – the name of the desired descriptor – and then several optional keywords arguments,

detailed below.

d (' de s c r i p t o r name ' , weight=1, norm=2, normmethod= ' stddev ' , distance= ' euc l i dean ' ,
energyWeight=False)

weight* How to weight this descriptor in relation to other descriptors.

SEARCH= [spass (' c l o s e s t ' , d (' c en t ro id ' , weight=1) , d (' n o i s i n e s s ' , weight=0.5))]

cent ro id i s twice as important as n o i s i n e s s .

norm* A value of 2 normalizes the target and corpus data separately. A value of 1 normal-

izes the target and corpus data together. 2 will yield a better rendering of the target’s

14

morphological contour. 1 will remain more faithful to concrete descriptor values. I rec-

ommend using 2 by default, only using 1 when dealing with very ‘descriptive’ descriptors

like duration or pitch.

SEARCH= [spass (' c l o s e s t ' , d (' c en t ro id ') , d (' ef fDur−seg ' , norm=1))]

normmethod* How to normalize data – either ‘stddev’ or ‘minmax’. minmax is more precise,

stddev is more forgiving of ‘outliers.’

distance* Only valid for time-varying descriptors. How to arithmetically measure distance

between target and corpus arrays.

‘euclidean’ does a simple least squares distance.

‘pearson’ a pearson correlation measurement.

SEARCH= [spass (' c l o s e s t ' , d (' c en t ro id ' , distance= ' pearson '))] # uses a pearson

c o r r e l a t i o n formula f o r determining d i s t ance between ta rg e t and corpus c en t ro id

ar rays .

energyWeight Only valid for time-varying descriptors. Weight distance calculations with the

corpus segments’ energy values. The means that softer frames will not affect distance as

much as louder frames. Only works if distance=‘euclidean’.

10 The SUPERIMPOSE variable and si() object

Use the si() object for specifying how corpus segments may be superimposed during concate-

nation.

SUPERIMPOSE = si (minSegment=None , maxSegment=None , minOnset=None , maxOnset=8,

minOverlap=None , maxOverlap=None , searchOrder= ' power ' , calcMethod= ' mixture ' ,
peakAlign=False)

minSegment The minimum number of corpus segments that must be chosen to match a target

segment.

maxSegment The maximum number of corpus segments that must be chosen to match a

target segment.

minOnset The minimum number of corpus segments that must be chosen to begin at any

single moment in time.

maxOnset The maximum number of corpus segments that must be chosen to begin at any

15

single moment in time.

minOverlap The minimum number of overlapping corpus segments at any single moment in

time. Note that an ‘overlap’ is determined according to an amplitude threshold – see

overlapAmpThresh.

maxOverlap The maximum number of overlapping corpus segments at any single moment

in time. Note that an ‘overlap’ is determined according to an amplitude threshold – see

overlapAmpThresh.

searchOrder (‘power’ or ‘time’) The default is ‘time’, which indicated to match corpus seg-

ments to target segments in the temporal order of the target (i.e., first searched segment is

the first segment in time). ‘power’ indicates to first sort the target segments from loudest

to softest, then search for corpus matches.

calcMethod A None/string which denotes how to calculate overlapping corpus sounds. None

does nothing – each corpus selection is unaware of previous selections. ‘subtract’ sub-

tracts the energy of a selected corpus sound from the target’s amplitude so that future

selections factor in the amplitude of past selections. ‘mixture’ subtracts the amplitude

and then attempts to mix the descriptors of simultaneous sounds together. Note that

some descriptors are not algorithmically mixable, such as f0, zeroCross.

11 Other Options

11.1 Descriptor Computation Parameters

DESCRIPTOR FORCE ANALYSIS (type=bool, default=False) if True, audioguide1.1.0

is forced to remake all SDIF analysis, even if previously made.

DESCRIPTOR WIN SIZE SEC (type=float, default=0.04096) the FFT window size of

descriptor analysis in seconds. 0.04096 seconds = 512 @ 12.5kHz (the default resample rate).

DESCRIPTOR HOP SIZE SEC (type=float, default=0.01024) the FFT window overlaps

of descriptor analysis in seconds. Important, as it effectively sets of temporal resolution of

audioguide1.1.0.

IRCAMDESCRIPTOR RESAMPLE RATE (type=int, default=25000) The internal re-

sample rate of the IRCAM analysis binary. Important, as it sets the frequency resolution of

16

spectral sound descriptors.

IRCAMDESCRIPTOR WINDOW TYPE (type=string, default=‘blackman’) see ircamde-

scriptor documentation for details.

IRCAMDESCRIPTOR NUMB MFCCS (type=int, default=13) sets the number of MFCCs

to make. Doesn’t seem to work in this release, as 13 is all I can ever seem to get out of the library.

IRCAMDESCRIPTOR F0 MAX ANALYSIS FREQ (type=float, default=5000) see ir-

camdescriptor documentation for details.

IRCAMDESCRIPTOR F0 MIN FREQUENCY (type=float, default=20) minimum pos-

sible f0 frequency.

IRCAMDESCRIPTOR F0 MAX FREQUENCY (type=float, default=5000) maximum

possible f0 frequency.

IRCAMDESCRIPTOR F0 QUALITY (type=float, default=0.1) see ircamdescriptor doc-

umentation for details.

SUPERVP BIN* (type=string/None, default=None) Optionally specify a path to the su-

pervp analysis binary. Used for target pre-concatenation time stretching.

11.2 Concatenation

ROTATE VOICES* (type=bool, default=False]) if True, audioguide1.1.0 will rotate through

the list of corpus entries during concatenation. This means that, when selecting corpus seg-

ment one, audioguide1.1.0 will only search sound segments from the first item of the CORPUS

variable. Selection 2 will only search the second, and so on. Corpus rotation is modular around

the length of the CORPUS variable. If the corpus only has one item, True will have no effect.

VOICE PATTERN* (type=list, default=[]) if an empty list, this does nothing. However, if

the user gives a list of strings, audioguide1.1.0 will rotate through this list of each concatenative

17

selection and only use corpus segments who’s filepath match this string. Matching can use parts

of the filename, not necessarily the whole path and it is not case sensitive.

OUTPUT QUANTIZE TIME METHOD (type=string/None, default=None) controls the

quantisation of the start times of events selected during concatenation. Note that any quantisa-

tion takes place after the application of OUTPUT TIME STRETCH and OUTPUT TIME ADD,

as detailed below. This variable has the following possible settings:

None no quantisation takes place (the default).

‘snapToGrid’ conform the start times of events to a grid spaced in OUTPUT QUANTIZE TIME INTERVAL

second slices.

‘medianAggregate’ change each event’s start time to the median start time of events in slices

of OUTPUT QUANTIZE TIME INTERVAL seconds.

OUTPUT QUANTIZE TIME INTERVAL (type=float, default=0.25) defines the tem-

poral interval in seconds for quantisation. If OUTPUT QUANTIZE TIME METHOD = None,

this doesn’t do anything.

OUTPUT GAIN DB* (type=int/None, default=None) adds a uniform gain in dB to all

selected corpus units. Affects the subtractive envelope calculations and descriptor mixtures as

well as csound rendering.

OUTPUT TIME STRETCH* (type=float, default=1.) stretch the temporality of selected

units. A value of 2 will stretch all events offsets by a factor of 2.

OUTPUT TIME ADD* (type=float, default=0.) offset the start time of selected events by

a value in seconds.

RANDOM SEED (type=int/None, default=None) sets the pseudo-random seed for random

unit selection. By default a value of None will use the system’s timestamp. Setting an integer

will create repeatable random results.

18

11.3 Concatenation Output Files

For each of the following * FILEPATH variables, a value of None tells the agConcatenate.py

NOT to create an output file. Otherwise a string tells agConcatenate.py to create this output

file and also indicates the path of the file to create. Strings may be absolute paths. If a relative

path is given, audioguide1.1.0 will create the file relative to the location o the agConcatenate.py

script.

CSOUND CSD FILEPATH (type=string/None, default=‘output/output.csd’) creates an

output csd file for rendering the resulting concatenation with csound.

CSOUND RENDER FILEPATH (type=string/None, default=‘output/output.aiff’) sets

the sound output file in the CSOUND CSD FILEPATH file. This is the name of csound’s

output soundfile and will be created at the end of concatenation.

MIDI FILEPATH (type=string/None, default=‘output/output.mid’) a midi file of the con-

catenation with pitches chosen according to midiPitchMethod from each corpus entry.

OUTPUT LABEL FILEPATH (type=string/None, default=‘output/outputlabels.txt’) Audacity-

style labels showing the selected corpus sounds and how they overlap.

LISP OUTPUT FILEPATH (type=string/None, default=‘output/output.lisp.txt’) a textfile

containing selected corpus events as a lisp-style list.

DATA FROM SEGMENTATION FILEPATH (type=string/None, default=None) This

file lists all of the extra data of selected events during concatenation. This data is taken from

corpus segmentation files, and includes everything after the startTime and endTime of each

segment. This is useful if you want to tag each corpus segment with text based information for

use later.

DICT OUTPUT FILEPATH (type=string/None, default=‘output/output.json’) a textfile

containing selected corpus events in json format.

MAXMSP OUTPUT FILEPATH (type=string/None, default=‘output/output.maxmsp.json’)

a textfile containing a list of selected corpus events. Data includes starttime in MS, duration

in MS, filename, transposition, amplitude, etc.

19

11.4 Other Output Files

For each of the following * FILEPATH variables, a value of None tells the agConcatenate.py

NOT to create an output file. Otherwise a string tells agConcatenate.py to create this output

file and also indicates the path of the file to create. Strings may be absolute paths. If a relative

path is given, audioguide1.1.0 will create the file relative to the location o the agConcatenate.py

script.

LOG FILEPATH (type=string/None, default=‘output/log.txt’) a log file with lots of infor-

mation from the concatenation algorithm.

TARGET SEGMENT LABELS FILEPATH (type=string/None, default=‘output/targetlabels.txt’)

Audacity-style labels showing how the target sound was segmented.

TARGET SEGMENTATION GRAPH FILEPATH (type=string/None, default=None)

like TARGET SEGMENT LABELS FILEPATH, this variable creates a file to show informa-

tion about target segmentation. Here however, the output is a jpg graph of the onset and offset

times and the target’s power. This output requires you to install python’s module matplotlib.

TARGET DESCRIPTORS FILEPATH (type=string/None, default=None) saves the loaded

target descriptors to a json dictionary.

TARGET PLOT DESCRIPTORS FILEPATH (type=string/None, default=None) cre-

ates a plot of each target descriptor used in concatenation. Doesn’t create plots for averaged

descriptors (“-seg”), only time varying descriptors.

11.5 Printing/Interaction

SEARCH PATHS (type=list, default=[]) a list of strings, each of which is a path to a

directory where soundfile are located. These paths extend the list of search paths that audio-

guide1.1.0 examines when searching for target and corpus soundfiles. The default is an empty

list, which doesn’t do anything.

20

VERBOSITY (type=int, default=2) affects the amount of information audioguide1.1.0 prints

to the terminal. A value of 0 yields nothing. A value of 1 prints a minimal amount of informa-

tion. A value of 2 (the default) prints refreshing progress bars to indicate the progress of the

algorithms.

PRINT SELECTION HISTO (type=bool, default=False) if True will print robust informa-

tion about corpus selection after concatenation. If false (the default) will add this information

to the log file, if used.

PRINT SIM SELECTION HISTO (type=bool, default=False) if True will print robust

information about corpus overlapping selection after concatenation. If false (the default) will

add this information to the log file, if used.

11.6 Csound Rendering

CSOUND SR (type=int, default=48000) The sample rate used for csound rendering. Csound

will interpolate the sample rates of all corpus files to this rate. It will be the sr of csound’s

output soundfile.

CSOUND KSMPS (type=int, default=128) The ksmps value used for csound rendering. See

csound’s documentation for more information.

CSOUND CHANNEL RENDER METHOD (type=string, default=‘mix’) Tells audio-

guide1.1.0 how deal with corpus segments distribution in the output soundfile By default‘’mix”

creates a 2 channel csound file and puts mono corpus sounds in the middle of the stereo field.

The string “oneChannelPerVoice” tells audioguide to put selected sounds from each item of the

CORPUS list into a separate channel. The number of output channels will therefore equal the

length of the CORPUS list variable.

CSOUND STRETCH CORPUS TO TARGET DUR (type=string/None, default=None)

Affects the durations of concatenated sound events rendered by csound. By default None doesn’t

do anything – csound plays back each corpus sound according to its duration. “pv” uses a phase

vocoder to stretch corpus sounds to match the duration of the corresponding target segment.

“transpose” does the same, but using the speed of playback to change duration rather than a

phase vocoder. Note that, in this case, any other transposition information generated by the

selection algorithm is overwritten.

21

CSOUND PLAY RENDERED FILE (type=bool, default=True) if True, audioguide1.1.0

will play the rendered csound file at the command line at the end of the concatenative algorithm.

MIDIFILE TEMPO (type=int/float, default=60) sets the tempo of the midi file output.

22

	Installation
	Really Quick Start
	Quick Start
	Segmenting Corpus Soundfiles
	Concatenating

	Corpus Segmentation
	The Concatenation Options File
	The TARGET Variable and tsf() object
	The CORPUS Variable and csf() object
	Manipulating which segments are added to the corpus
	Manipulating How Directories Are Read
	Manipulating How Segments Will Be Concatenated
	Specifying csf() keywords globally

	SEARCH variable and spass() object
	The d() object
	The SUPERIMPOSE variable and si() object
	Other Options
	Descriptor Computation Parameters
	Concatenation
	Concatenation Output Files
	Other Output Files
	Printing/Interaction
	Csound Rendering

