
By Ben Hackbarth, Norbert Schnell, Philippe Esling, Diemo Schwarz.
Copyright Ben Hackbarth, 2011-2013.

Contents

1 Installation 2

2 Quick Start 2
2.1 Segmenting Corpus Soundfiles . 3
2.2 Concatenating . 4

3 Corpus Segmentation 5
3.1 Onset Detection . 5
3.2 Offset Detection . 6

4 The Concatenate Options File 6
4.1 The TARGET Variable . 7
4.2 The CORPUS Variable . 7

4.2.1 Manipulating which segments are added to the corpus 8
4.2.2 Manipulating How Directories Are Read 9
4.2.3 Manipulating How Segments Will Be Concatenated 9
4.2.4 Miscellaneous . 11
4.2.5 Specifying CORPUS entry attributes globally 11

4.3 The SEARCH Variable . 11
4.4 SEARCH and spass objects . 11

4.4.1 The D object . 12

5 Examples 13
5.1 Example 1 . 13

1

6 The SUPERIMPOSE variable 14

7 Other Options 15

1 Installation

Here is a list of the resources that AudioGuide requires on your computer. If you run OSX 10.6
or higher1.

ircamdescriptors AudioGuide uses IRCAM’s descriptor analysis binary (Please note, I am
not permitted to distribute this binary). When you run Audioguide the first time, a nice
lady will ask you to enter the path of the descriptor binary.

pysdif First download the sdif library and configure, make and install. Then download my
patched version of the pysdif module. ‘cd’ into the directory when unzipped and run:
‘python2.7 setup.py install’. You’re now setup to use pysdif in python2.7.

numpy Most python2.7 installations come with numpy, a numerical computation module.
Upgrading to the latest python2.7 should get you there. If you don’t have it, you can
download the source code or a binary installer here.

csound Needed only if you would like Audioguide to automatically render concatenations
(which you probably do). Download an installer from here.

2 Quick Start

Using Audioguide comes down to interacting with two python scripts in the audioGuide folder.
One script does segmentation of corpus soundfiles. The other performs concatenation based on
the variables found in a options file.

Note: If you only want to use folders of sounds that have been pre-segmented into individual
files, you can skip2 the Segmenting Corpus Soundfiles section and proceed to the concatenation
section.

The reason that segmentation and concatenation are separated is that I find is useful to fine-tune
the segmentation of corpus sounds before using them in a concatenation. Sound segmentation

1python2.7 comes with numpy and this AudioGuide distribution comes with a precompiled pysdif. So you
will only need the IRCAmn binary and csound.

2But make sure tell AudioGuide not to search for segmentation textfiles by setting the corpus attribute
wholeFIle=True. See the Manipulating How Directories Are Read subsection of the CORPUS options section
for more info.

2

http://www.ircam.fr/1041.html?&L=1
http://sourceforge.net/projects/sdif/files/sdif/
http://crca.ucsd.edu/~ben/audioGuide/pysdif-0.1.4-patch.zip
http://www.scipy.org/install.html
http://www.csounds.com/downloads

is a difficult technical problem and should remain conceptually and aesthetically open-ended.
I have yet to find an algorithm that does not require adjustments based on the nature of the
sound in question and the intended result.

2.1 Segmenting Corpus Soundfiles

The script you use to segment your corpus files with a script called ‘segmentSf.py’. The output
of segmentSf.py is a textfile which denotes the start and stop times of autonomous sound
segments in a continuous audiofile. Once you find a segmentation that you’re happy with, you
don’t need to keep running this script. Whats more, you do not need to use ‘segmentSf.py’ if
you do not want to – instead you could:

1. use whole soundfiles as segments

2. create segmentation files by hand

3. create segmentation files with other software as long the textfile is written in the same
format as AudioGuide’s.

To segment a corpus file, ‘cd’ into the audioGuide-1.02 folder and run the following command:

$ > . / segmentSf . py examples / lachenmann . aiff

Audioguide will think for a second, and then output the following data detailing the segmen-
tation of this audiofile:

−−−−−−−−−−−−−−−−−−−−−−−−−− Segment Soundfile −−−−−−−−−−−−−−−−−−−−−−−−−−−
Creating segmentation label file f o r lachenmann . aiff . . .

Evaluating Target lachenmann . aiff from 0.00 sec −> 64 .65 sec

100% [==]

Done .

Threshold dB : −40.000000 rise : 1 .300000 Offset dB : −54.619647

AudioGuide found 132 segments

As a result of running this python script, Audioguide wrote a textfile called examples/lachen-
mann.aiff.txt. In it are 132 segments obtained using a triggering threshold of -40 dB, a rise
ratio of 1.3 and a offset dB value of -54 (you can read more about how to alter these values
and their effect in the subsequent section).

3

2.2 Concatenating

Next you call the concatenate script concatenateSf.py with an AudioGuide options file as the
first (and only) argument.

To run one of the examples in the examples directory, run the following command inside the
audioGuide-1.02 directory:

. / concatenateSf . py examples/01− simpleSelection . py

..which will use the options contained in ‘examples/01-simpleSelection.py’ to parameterize the
concatenative algorithm. In this file you specify the target sound, the corpus sounds, and lots
of other options that parameterize the concatenative process. The ‘concatenateSf.py’ script
will perform the following operations in order:

1. Run an ircamdescriptor analysis of the soundfile in the 4.1 TARGET variable3.

2. Segment the target sound according to your options file. An Audacity-style labels file is
created in a file called ‘tgtLabels.txt’ in the output directory.

3. Run an ircamdescriptor analysis of the soundfiles in the CORPUS variable (only the first
time each of these files are used).

4. (If you’ve specified them) Remove corpus segment according to descriptor limitations
(Nothing above a certain pitch, nothing below a certain dynamic, etc.).

5. Normalize target and corpus descriptor data according to you options file.

6. Go through each target segment one by one. Select corpus segment(s) to match each
target segment according to the descriptors and search passes in the SEARCH variable
of your options file. Control over the layering and superimposition of corpus sounds is
specified in the SUPERIMPOSE variable.

7. Write selected segments to a sound score called ‘csoundScore.txt’ in the output directory.

8. If you have csound, ‘csoundScore.txt’ is rendered with audioguide/scripts/csoundRen-
der.orc orchestra to create an audiofile called ‘output/output.aiff’.

9. If you have csound, automatic playback of ‘output.aiff’ at the command line. Works on
OS X (afplay) and Linux (aplay).

3An SDIF analysis is only done once – subsequent usages of a soundfile simply read SDIF data from disk.
Analysis files are stored in a directory called ‘data json/’ in the audioguide folder. This directory can become
quite large since these SDIF files are quite large in size. Removing this folder will cause all SDIF files to be
recomputed.

4

3 Corpus Segmentation

Audioguide uses a labeling format identical to that of the soundfile editor Audacity. So, to
examine your segments, open lachenmann.aiff in Audcaity, then import labels and select ‘ex-
amples/lachenmann.aiff.txt’.

These segmentation textfiles document one segment per line. here is an example line: ‘1.50
2.13 onset -12.9 offset rise 1.33’.

Everything after startSec and endSec is not required by AudioGuide, but give you information
about the segmentation logic. These fields correspond to: startSec endSec onset thresholdValue
offset offsetMethod methodValue.

.. and indicate ..

3.1 Onset Detection

thresholdValue: the value of the threshold which triggered this segment’s onset. it is in negative
dB where -100 dB is very soft and -6 dB is very loud. you can change the threshold level that
triggers onsets by passing the segmentSf.py script a ‘-t’ flag:

. / segmentSf . py −t −30 soundfilename . wav

...sets the threshold to -30. it will produce less onsets then -40 (the default).

5

3.2 Offset Detection

AudioGuide’s soundfile segmentation uses two methods for creating an offset (an offset means
to end a currently active sound segment). The first method is simple – if the amplitude of a
segment drops below a certain dB threshold, called ‘drop’ and can be changed from its default
value using the ‘-d’ flag.

. / segmentSf . py −d 4 soundfilename . wav

... which changes the drop dB value to 4 dB above the minimum amplitude found in the entire
soundfile.

The second method is more complicated: if the amplitude of the sound is louder that the
previous value and the ratio of the current value over the previous value is above the ‘rise
ratio’. This is a very useful construct: imagine that you are in a current sound segment, but
the soundfile suddenly gets much louder, and you’d like to end the current segment so that you
may start a new one which reflects this change. You can override the default rise ratio (1.1)
using the ‘-r’ flag:

. / segmentSf . py −r 4 soundfilename . wav

...a value of 1.1 will be quite sensitive to changes in amplitude. A value of 4 will be less sensitive
- a larger crescendo is needed to turn off a currently active segment.

Note that to segment a whole directory of soundfiles, you may use wildcard characters in the
bash shell, as in:

. / segmentSf . py mydir /∗ . aiff # crea t e a segmentation f i l e f o r each a i f f f i l e l o ca t ed in

mydir/

4 The Concatenate Options File

The options file used by the concatenate script if a python file that defines a bunch of variables.
Most variables are changed with simple assignments using the ‘=’ symbol. For instance, to
change the path of the csound output sound file, write the following in your options.py file:

CSOUND_RENDER_FILEPATH = ' /path/ to / the / f i l e / i /want . a i f f ' # se t s the path o f the csound

output a i f f f i l e

LOG_FILEPATH = None # None t e l l s AudioGuide to not make a log . txt f i l e .

However, there are five objects that are written into the options file as well – ‘tsf’, ‘csf’,
‘spass’, ‘d’, ‘si’. These objects take required parameters and also take keyword arguments. The

6

following sections describe the object-style variables.

4.1 The TARGET Variable

The TARGET variable is written as a ‘tsf’ object which requires the path to a soundfile and
also takes the following optional keyword arguments:

tsf (' path ' , start=0, end=file−length , thresh=−20, rise =1.3 , scaleDb=0, minSegLen =0.05 ,

maxSegLen=4)

start The time in seconds to start reading the target soundfile.

end The time in seconds to stop reading the target soundfile.

scaleDb Applies an amplitude change to the target sound. by default, it is 0, yielding no
change. -6 = twice as soft. The target’s amplitude will usually affect concatenation: the
louder the target, the more corpus sounds can be composted to approximate it energy.

thresh Set the threshold for segmentation: a value in negative dB. The lower the value the
soft the target’s amplitude can be in order to trigger a selection from the corpus. So, -12
yields fewer corpus selections that -24.

rise

minSegLen The minimum duration in seconds of a target segment.

maxSegLen The maximum duration in seconds of a target segment.

TARGET = tsf (' cage . a i f f ') # uses the whole s ound f i l e at i t s g iven amplitude

TARGET = tsf (' cage . a i f f ' , start=5, end=7, scaleDb=6) # only use seconds 5−7 o f cage .

a i f f at double the amplitude .

4.2 The CORPUS Variable

The CORPUS variable is defined as a list of ‘csf’ objects which require a path to a soundfile
OR a directory. File paths and/or directory paths may be full paths or relative paths to the
location of the options file you’re using. A ‘csf’ object takes the following optional keyword
arguments:

csf (' path ' , start=0, end=file−length , includeTimes =[] , excludeTimes =[] , limit =[] ,

wholeFile=False , recursive=True , includeStr=None , excludeStr=None , onsetLen =0.01 ,

offsetLen=30, transMethod=None , transQuantize=0, allowRepetition=True ,

restrictRepetition =0.1 , restrictOverlaps=None , restrictInTime=None , scaleDb=0,

superimposeRule=None , segmentationFile=None , segmentationExtension= ' . txt ')

7

The simplest way to include a soundfile in your corpus is to use its path as the first argument
of the ‘csf’ object:

CORPUS = [csf (” lachenmann . a i f f ”)] # w i l l s earch f o r a segmentat ion f i l e c a l l e d

lachenmann . a i f f . txt and add a l l o f i t s segments to the corpus

The simplest way to include a directory of soundfiles in your corpus is to use its path as the
first argument of the ‘csf’ object:

CORPUS = [csf (” lachenmann . a i f f ”) , csf (' piano ')] # w i l l use segments from lachenmann .

a i f f as we l l as a l l sounds in the d i r e c t o r y c a l l e d piano

However, as you can see above, each ‘csf’ object has a lot of optional arguments to give you
better control over what segments are used, how directories are read and how segments are
treated during concatenation.

Note: Each of these keyword arguments only apply to the csf object within which they are writ-
ten. If you’d like to specify these parameters for the entire corpus, see section 4.2.5: Specifying
CORPUS entry attributes globally.

4.2.1 Manipulating which segments are added to the corpus

start Any segments which start before this time will be ignored.

end Any segments which start after this time will be ignored.

csf (' lachenmann . a i f f ' , start=20) # only use segments who s t a r t l a t e r than 20 s .

csf (' lachenmann . a i f f ' , start=20, end=50) # only use segments who s t a r t between 20−50s .

includeTimes A list of two-number lists which specify regions of segments to include from
this file’s list of segment times. See example below.

excludeTimes Same as includeTimes but excludes segments in the identified regions.

csf (' lachenmann . a i f f ' , includeTimes =[(1 , 4) , (10 , 12)]) # only use segments f a l l i n g

between 1−4 seconds and 10−12 seconds .

csf (' lachenmann . a i f f ' , excludeTimes =[(30 , 55)]) # use a l l segments except those

f a l l i n g between 30−55s .

limit A list of equation-like strings where segmented descriptor names are used to include/ex-
clude segments from this file / directory.

csf (' lachenmann . a i f f ' , limit [' centro id−seg >= 1000 ']) # segments whose centro id−seg i s

equal to or above 1000 .

8

csf (' lachenmann . a i f f ' , limit [' centro id−seg < 50% ']) # only use 50% of segments with

the lowest centro id−seg .

csf (' lachenmann . a i f f ' , limit ['power−seg < 50% ' , 'power−seg > 10% ']) # only use

segments whose power−seg f a l l s between 10%−50% of the t o t a l range o f power−seg ' s in

t h i s f i l e / d i r e c t o r y .

4.2.2 Manipulating How Directories Are Read

The following keyword arguments are useful when dealing with directories of files.

wholeFile (False): if True audioguide will use this soundfile as one single segment. If False,
audioguide will search for a segmnetation file made with segmentSf.py.

recursive (True): if True audioguide will include sounds in all subfolders of a given directory.

csf (' s l i c e d /my−d i r e c t o r y ' , wholeFile=True) # w i l l not search f o r a segmentat ion txt

f i l e , but use whole s o und f i l e s as s i n g l e segments .

csf (' /Users /ben/ g r a v i l l o n s ' , recursive=False) # w i l l only use s o und f i l e s in the named

fo ld e r , i gno r ing i t s s u bd i r e c t o r i e s .

includeStr (None): A string which is matched against the filename (not full path) of each
soundfile in a given directory. If part of the soundfile name matches this string, it is
included. If not it is excluded. This is case sensitive. See example below.

excludeStr (None): Opposite of includeStr.

inc ludeS t r / exc ludeSt r have l o t s o f uses . One to h i gh l i g h t here : working with sample

databases which are normal ized . Rather than having each corpus segment be at 0dbs ,

we apply a scaleDb value based on the presence o f a `dynamic ' wr i t t en in to the

f i l ename .

csf (' Vienna−harpNotes / ' , includeStr=[' f ' , ' f f '] , scaleDb=−6) ,

csf (' Vienna−harpNotes / ' , includeStr= ' mf ' , scaleDb=−18) ,

csf (' Vienna−harpNotes / ' , includeStr= ' p ' , scaleDb=−30) ,

th i s w i l l use a l l sounds from th i s f o l d e r which match one o f the three dynamics .

4.2.3 Manipulating How Segments Will Be Concatenated

scaleDb applies an amplitude change to each segment of this collection. by default, it is 0,
yielding no change. -6 = twice as soft. Note that amplitude scaling affects both the
concatenative algorithm and the csound rendering.

onsetLen if onsetLen is a float or integer, it is the fade-in time in seconds. If it is a string
formed as ’10%’, it is interpreted as a percent of each segment’s duration. So, on-

9

setLen=0.1 yields a 100 ms. attack envelope while onsetLen=’50%’ yields a fade in over
50% of the segment’s duration.

offsetLen Same as onsetLen, but for the envelope fade out.

csf (' lachenmann . a i f f ' , onsetLen =0.1 , offsetLen= '50% ') # w i l l use a segmentat ion f i l e

c a l l e d marmotTent . txt , not the d e f au l t lachenmann . a i f f . txt .

transMethod A string indicating how to transpose segments chosen from this corpus entry.

transQuantize Quantization interval for transposition of corpus sounds. 1 will quantize to
semitones, 0.5 to quarter tones, 2 to whole tones, etc.

csf (' piano / ' , transMethod= ' f 0 ') # transpose corpus segments to match the t a r g e t ' s f 0 .

csf (' piano / ' , transMethod= ' f0−chroma ' , transQuantize =0.5) # transpose corpus segments

to match the ta r g e t ' s f 0 mod 12 . Then quant ize each r e s u l t i n g p i t ch to the newest

quarte r o f tone .

allowRepetition If False, any of the segments from this corpus entry may only be picked one
time. If True there is no restriction.

restrictRepetition A delay time in seconds where, once chosen, a segment from this corpus
entry is invalid to be picked again. The default is 0.1, which the same corpus segment
from being selected in quick succession.

csf (' piano / ' , allowRepetition=False) # each i nd i v i dua l segment found in t h i s d i r e c t o r y

o f f i l e s may only be de l e t ed one time during concatenat ion .

csf (' piano / ' , restrictRepetition =2.5) # Each segment i s i n v a l i d to be picked i f i t has

a l r eady been s e l e c t e d in the l a s t 2 .5 seconds .

restrictOverlaps An integer specifying how many overlapping samples from this collection
may be chosen by the concatenative algorithm at any given moment. So, restrictOver-
laps=2 only permits 2 overlapping voices at a time.

restrictInTime a time in seconds specifying how often a sample from this entry may be
selected. – for example restrictInTime=0.5 would permit segments from this collection
to be select a maximum of once every 0.5 seconds.

superimposeRule This one is a little crazy. Basically, you can specify when this corpus’s
segments can be chosen based on the number of simultanously selected samples. You do
this by writing a little equation as a 2-item list. superimposeRule=(’==’, 0) says that
this set of corpus segments may only be chosen is this is the first selection for this target
segment (sim selection ”0”). superimposeRule=(’¿’, 2) say this corpus’s segments are
only valid to by picked if there are already more than 2 selections for this target segment.
I know, right?

10

4.2.4 Miscellaneous

segmentationFile Manually specify the segmentation text file. By default, AudioGuide au-
tomatically looks for a file with the same name as the soundfile plus the extension ’.txt’.
You may specify a string, or a list of strings to include multiply segmentation files which
all use the same soundfile.

segmentationExtension Manually specify the segmentation text file extension.

csf (' lachenmann . a i f f ' , segmentationFile= 'marmotTent . txt ') # w i l l use a segmentat ion

f i l e c a l l e d marmotTent . txt , not the d e f au l t lachenmann . a i f f . txt .

csf (' lachenmann . a i f f ' , segmentationExtension= '−gran . txt ') # w i l l use a segmentat ion

f i l e c a l l e d lachenmann . a i f f −gran . txt , not the d e f au l t lachenmann . a i f f . txt .

4.2.5 Specifying CORPUS entry attributes globally

Corpus entry attributes may be specified globally using the variable CORPUS GLOBAL ATTRIBUTES.
Note that they are specified in dictionary format rather than keyword format.

CORPUS = [csf (' lachenmann . a i f f ' , scaleDb=−6) , csf (' piano / ' , scaleDb=−6, wholeFile=True

)]

i s equ iva l en t to

CORPUS = [csf (' lachenmann . a i f f ') , csf (' piano / ' , wholeFile=True)]

CORPUS_GLOBAL_ATTRIBUTES = { ' scaleDb ' : −6}

4.3 The SEARCH Variable

the SEARCH variable specifies how Audioguide pick corpus segments to match target segments.
The idea here is make a very flexible searching structure where the user can create multiple
search passes on different criteria.

4.4 SEARCH and spass objects

The SEARCH variable is written as a list of ”spass” objects.

spass (result_type , descriptor1 . . . descriptorN , percent=None)

Here is the most simple case:

11

SEARCH = [spass (' c l o s e s t ' , d (' c en t ro id '))] # w i l l s earch a l l corpus segments and

s e l e c t the one with the ` c l o s e s t ' c en t ro id to the t a r g e t segment .

Note that the first argument is the type of search performed – in this case, selecting the closest
sample. Following the arguments are a list of descriptor objects which specify which descriptors
to use. Finally there are some keyword parameters that we will touch on later.

SEARCH = [spass (' c l o s e s t ' , d (' c en t ro id ') , d (' ef fDur−seg '))] # w i l l s earch a l l corpus

segments and s e l e c t the one with the ` c l o s e s t ' c en t ro id and e f f e c t i v e durat ion

compared to the ta r g e t segment .

Ok, great. As you can probably imagine, the first argument, ‘closest’, tells AudioGuide to pick
the closest sound. But, there are also other possibilities:

SEARCH = [spass (' f a r t h e s t ' , d (' c en t ro id '))] # return the worst matching segment .

SEARCH = [spass (' c l o s e s t p e r c e n t ' , d (' c en t ro id ') , percent=20)] # return the top 20

percent best matches .

SEARCH = [spass (' f a r t h e s t p e r c e n t ' , d (' c en t ro id ') , percent=20)] # return the worst 20

percent o f matches .

If you use ‘closest percent’ or ‘farthest percent’ as the one and only spass object in the SEARCH
variable, AudioGuide will select a corpus segment randomly among the final candidates. How-
ever, you can also chain spass objects together, essentially constructing a hierarchical search
algorithm. So, for example, take the following SEARCH variable with two separate phases:

SEARCH = [

spass (' c l o s e s t p e r c e n t ' , d (' ef fDur−seg ') , percent=20) , # take the best 20% of matches

from the corpus

spass (' c l o s e s t ' , d (' mfccs ')) , # now f i nd the best matching segment from the 20 percent

that remains .

]

I use the above example a lot when using AudioGuide. It first matches effDur-seg, the effective
duration of the target measured agains’t the effective duration of each corpus segment. It
retains the 20% closest matches, and throws away the worst 80%. Then, with the remaining
20%, the timbre of the sounds are matched according to mfccs.

Remember, the order of the spass objects in the SEARCH variable is very important – it is
essentially the order of operations.

4.4.1 The D object

Use the ‘d’ object for specifying a descriptor in the SEARCH variable.

12

d (' de s c r i p t o r name ' , weight=1, norm=2, normmethod= ' stddev ' , distance= ' euc l i dean ' ,

energy=False)

weight How to weight this descriptor in relation to other descriptors.

SEARCH= [spass (' c l o s e s t ' , d (' c en t ro id ' , weight=1) , d (' n o i s i n e s s ' , weight =0.5))]

cent ro id i s twice as important as n o i s i n e s s .

norm A value of 2 normalizes the target and corpus data separately. A value of 1 normalizes
the target and corpus data together. 2 will yield a better rendering of the target’s temporal
contour. 1 will remain more faithful to concrete descriptor values. I recommend using 2
by default, only using 1 when dealing with very ‘descriptive’ descriptors like duration or
pitch.

SEARCH= [spass (' c l o s e s t ' , d (' c en t ro id ') , d (' ef fDur−seg ' , norm=1))]

normmethod How to normalize data – either ’stddev’ or ’minmax’. minmax is more precise,
stddev is more forgiving of ‘outliers.’

distance Only valid for time-varying descriptors. How to arithmetically evaluate distance
between continuously valued array. ’euclidean’ does a simple least squares search. Other
methods include ’pearson’, ’buttuck’ and ’logjammin’.

SEARCH= [spass (' c l o s e s t ' , d (' c en t ro id ' , distance= ' pearson '))] # uses a pearson

c o r r e l a t i o n formula f o r determining d i s t ance between the cont inuous ly valued

cen t ro id o f t a r g e t and corpus segments .

energy Only valid for time-varying descriptors. Weight distance calculations with the corpus
segments energy values. So, softer frames will not penalize distance.

5 Examples

5.1 Example 1

TARGET = tsf (' cage . a i f f ' , thresh=−28)

CORPUS = [

csf (' lachenmann . a i f f ') ,

]

SEARCH = [

spass (' c l o s e s t p e r c e n t ' , d (' ef fDur−seg ') , percent=20) ,

spass (' c l o s e s t ' , d (' mfccs '))

13

]

This example i s c a l l e d s i n g l e S e l e c t i o n f o r a reason −− here we s e t the superimpose

ob j e c t to only a l low one corpus segment to be s e l e c t e d f o r each ta rg e t segment (

maxSegment=1) . S ince the f i r s t spass in SEARCH i s us ing the d e s c r i p t o r ef fDur−seg ,

we can except to have somewhat s im i l a r durat ions f o r the s e l e c t e d corpus segments .

However , note that t h i s might not be true , in p a r t i c u l a r i f you use a corpus w i l l

w i l d l y d i f f e r e n t segment durat ions that your t a r g e t . I f you don ' t care about

duration , you can remove the f i r s t spass ob j e c t from SEARCH. I f you want durat ions

to be rendered to match the ta r g e t more p r e c i s e l y , s ee below .

SUPERIMPOSE = si (maxSegment=1)

I f you uncomment one o f the f o l l ow ing l i n e s , csound w i l l s t r e t c h s e l e c t e d corpus

samples to match the durat ion o f the t a r g e t segments . This w i l l not change which

segments are s e l e c t ed , only t h e i r durat ion in csound render ing . By de fau l t ,

CSOUND STRETCH CORPUS DURATIONS TO MATCH TARGET=0, which does not perform and

temporal manipulat ion .

#CSOUND STRETCH CORPUS DURATIONS TO MATCH TARGET = 1 # 1 = phase vocoder (w i l l not

change p i t ch)

#CSOUND STRETCH CORPUS DURATIONS TO MATCH TARGET = 2 # 2 = tape−head t r an spo s i t i o n (

w i l l change p i t ch)

6 The SUPERIMPOSE variable

Use the ‘si’ object for specifying how corpus segments may be superimposed during concatena-
tion.

SUPERIMPOSE = si (minSegment=None , maxSegment=None , minOnset=None , maxOnset=8,

minOverlap=None , maxOverlap=None , overlapAmpThresh=−70. , searchOrder= ' power ' ,

calcMethod= ' mixture ' , peakAlign=False)

minSegment The minimum number of corpus segments that must be chosen to match a target
segment.

maxSegment The maximum number of corpus segments that must be chosen to match a
target segment.

minOnset The minimum number of corpus segments that must be chosen to begin at any
single moment in time.

maxOnset The maximum number of corpus segments that must be chosen to begin at any
single moment in time.

minOverlap The minimum number of overlapping corpus segments at any single moment in
time. Note that an ‘overlap’ is determined according to an amplitude threshold – see
overlapAmpThresh.

14

maxOverlap The maximum number of overlapping corpus segments at any single moment
in time. Note that an ‘overlap’ is determined according to an amplitude threshold – see
overlapAmpThresh.

overlapAmpThresh

searchOrder (‘power’ or ‘time’) The default is ‘time’, which indicated to match corpus seg-
ments to target segments in the temporal order of the target (i.e., first searched segment is
the first segment in time). ‘power’ indicates to first sort the target segments from loudest
to softest, then search for corpus matches.

calcMethod A string which denotes how to calculate overlapping corpus sounds. None does
nothing – each corpus selection is unaware of previous selections. ”subtract” subtracts
the energy of a selected corpus sound from the target’s amplitude so that future selections
might be later in time and softer. ”mixture” subtracts the amplitude and then attempts
to mix the descriptors of simultaneous sounds together. Note that some descriptors are
not algorithmically mixable, such as f0, zeroCross, and peak descriptors.

7 Other Options

SETUP

Name Default Value Type
TARGET SEARCH PATH ‘target/’ str
CORPUS SEARCH PATH ‘source/’ str
PLOT PATH ‘output/’ str
SOUNDFILE EXTENSIONS [’.aiff’, ’.aif’, ’.wav’, ’.au’] list
RANDOM SEED None None
VERBOSITY 2 int
USE PROGRESS BAR True bool
OUTPUT FLOAT PRECISION 3 int
PRINT LENGTH 80 int
ALERT ON ERROR True bool
PRINT SELECTION HISTO False bool
PRINT SIM SELECTION HISTO True bool
PRINT ELAPSED TIMES True bool

DESCRIPTOR COMPUTATION SETTINGS

Name Default Value Type
DESCRIPTOR FORCE ANALYSIS False bool

15

Name Default Value Type
DESCRIPTOR WIN SIZE SEC 0.04643990929708 float
DESCRIPTOR HOP SIZE SEC 0.01160997732427 float
IRCAMDESCRIPTOR RESAMPLE RATE 12500 int
IRCAMDESCRIPTOR WINDOW TYPE ‘blackman’ str
IRCAMDESCRIPTOR NUMB MFCCS 13 int
IRCAMDESCRIPTOR F0 MAX ANALYSIS FREQ 5000 int
IRCAMDESCRIPTOR F0 MIN FREQUENCY 20 int
IRCAMDESCRIPTOR F0 MAX FREQUENCY 5000 int
IRCAMDESCRIPTOR F0 AMP THRESHOLD 30 int
IRCAMDESCRIPTOR F0 QUALITY 0.1 float
SUPERVP NUMB PEAKS 12 int
CLUSTERANAL DESCRIPTOR DIM [’mfcc1’, ’mfcc2’, ’mfcc3’] list
CLUSTERANAL NUMB CLUSTS 8 int

OUTPUT FILES

Name Default Value Type
CSOUND SCORE FILEPATH ‘output/csoundScore.txt’ str
CSOUND RENDER FILEPATH ‘output/output.aiff’ str
LOG FILEPATH ‘output/log.txt’ str
MIDI FILEPATH ‘output/midiFile.mid’ str
TARGET SEGMENT LABELS FILEPATH ‘output/tgtLabels.txt’ str
SUPERIMPOSITION LABEL FILEPATH ‘output/superimpositionLabels.txt’str
QLIST FILEPATH None None
LISP FILEPATH None None
OM SCORE FILEPATH None None
TGT OM SCORE FILEPATH None None
BACH SCORE FILEPATH None None
SEGMENT LABELS FILEPATH None None
PARAM SCORE FILEPATH None None
CSOUND OUTPUT MIX FILEPATH None None
MAXMSP DICT PATH ‘output/output.json’ str
CSOUND WRITE SCORE COMMENTS False bool
CSOUND RENDER WITH ULIMIT True bool
CSOUND PLAY RENDERED FILE True bool
CSOUND RENDER SEPARATE FILE FOR EACH CORPUS ENTRYFalse bool
CSOUND RENDER SEPARATE FILE FOR EACH CORPUS OVERLAPFalse bool
CSOUND SCORE DURATION TYPE ‘corpusDur’ str
CSOUND STRETCH CORPUS DURATIONS TO MATCH TARGET0 int
CSOUND OUTPUT MIX PAN ‘middle’ str

16

TARGET

Name Default Value Type
TARGET STRETCH TIME 1 int
TARGET DESCRIPTOR MODIFY [] list
TARGET PLOT METRICS False bool
TARGET ONSET DESCRIPTORS ’power-odf-7’: 1 dict
TARGET ONSET FORCE MAX dict
TARGET ONSET THRESHOLD SIM PENALITY +0 int
TARGET ONSET THRESHOLD ACTIVE PENALITY +0 int
TARGET SEGMENT OFFSET DB ABS THRESH -80. float
TARGET SEGMENT OFFSET DB REL THRESH +18 int
TARGET ONSET ENVELOPE ‘raw’ str
TARGET OFFSET ENVELOPE ‘raw’ str
TARGET LOAD SEGMENTS FILEPATH None None
TARGET MAKE GRID ATTENUATION None None

CORPUS TEMPORAL RESTRICTIONS

Name Default Value Type
CORPUS GLOBAL ATTRIBUTES dict
MW DEFINE INSTRUMENTS [] list
LIMIT CORPUS BY DESCRIPTOR dict
VOICE PATTERN [] list
CORPUS RESTRICT DISCRIPTOR IN TIME [] list
CORPUS RESTRICT NUMBER STREAMS 0 int
MAX ACTIVE VOICES None None
ROTATE VOICES False bool

DATA NORMALIZATION

Name Default Value Type
NORMALIZE METHOD ‘stddev’ str
NORMALIZE TARGET SEGMENTS ONLY True bool
NORMALIZE SCALE STD DEV 1 int
NORMALIZE CLUSTER MAPPING ‘leastSqrError’ str
NORMALIZE CLUSTERS METHOD ‘stddev’ str

CONCATENATE SELECTION

17

Name Default Value Type
ALWAYS MAKE COMPLETE MATCHING RESULTS False bool
VOICE RESTRICT PER SEGMENT False bool
RANDOMIZE AMPLITUDE FOR SIM SELECTION False bool
SIM CALC PEAK ALIGN ‘none’ str
CONCATENATE PEAK ALIGN ENVELOPE ‘raw’ str

CONCATENATE AMPLITUDE

Name Default Value Type
OUTPUT GAIN 0 int
POST SELECTION AMP SCALE ‘None’ str
POST SELECTION AMP MIN -12 int
POST SELECTION AMP MAX +12 int
POST SELECTION AMP PEAK AMP METRIC ‘power-seg’ str

CONCATENATE TIME MANIPULATION

Name Default Value Type
TEMPO CHANGE 60 int
TIME OFFSET 0.0 float
ALIGN NOTE PEAKS False bool
RHYTHM QUANTIZE 0 int
RHYTHM QUANTIZE METHOD ‘aggregate’ str
BACH TEMPO 60 int
BACH METER ‘4/4’ str
CONCATENATE PEAK ALIGN ‘none’ str

18

	Installation
	Quick Start
	Segmenting Corpus Soundfiles
	Concatenating

	Corpus Segmentation
	Onset Detection
	Offset Detection

	The Concatenate Options File
	The TARGET Variable
	The CORPUS Variable
	Manipulating which segments are added to the corpus
	Manipulating How Directories Are Read
	Manipulating How Segments Will Be Concatenated
	Miscellaneous
	Specifying CORPUS entry attributes globally

	The SEARCH Variable
	SEARCH and spass objects
	The D object

	Examples
	Example 1

	The SUPERIMPOSE variable
	Other Options

